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Abstract Chenciner and Jiménez-Pérez (Mosc Math J 13(4):621–630, 2013)
showed that the range of the spectra of the angular momenta of all the rigid
motions of a fixed central configuration in a general Euclidean space form a
convex polytope. In this note we explain how this result follows from a gen-
eral convexity theorem of O’Shea and Sjamaar in real moment map geometry
(Math Ann 31:415–457, 2000). Finally, we provide a representation-theoretic
description of the pushforward of the normalized measure under the real
moment map for Riemannian symmetric pairs.

1 Introduction

An n-body configuration x = (x1, . . . , xn) in a Euclidean space E withmasses
m1, . . . ,mn > 0 moving in a Newtonian gravity force field F = ∇U (x) with
reduced center ofmass

∑
mkxk/

∑
mk = 0 is called balancedwith factor� if

∇U (x) = −�xm

for � : E → E a symmetric linear operator on E and m = diag(m1, . . . ,mn)

the mass matrix [1]. This is an algebraic equation with presumably an abun-

B Lei Zhao
l.zhao@nankai.edu.cn

Gert Heckman
g.heckman@math.ru.nl

1 Radboud University, Nijmegen, The Netherlands

2 Chern Institute ofMathematics, Nankai University, Tianjin, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-015-0644-2&domain=pdf


G. Heckman, L. Zhao

dance of solutions for large n. It is clear that for μ > 0 and k ∈ SO(E) the
similar configuration μkx is again balanced with factor k�k∗/μ3.

Let x be such a balanced configuration in E with factor �. If Z : E → E
is a skew symmetric linear operator and satisfies Z2 = −�, then the rigid
motion t �→ z(t) = exp(t Z)x is a solution of Newton’s equation

z̈m = ∇U (z).

Chenciner and Jiménez-Pérez have shown that the range of the spectra of the
angular momenta of all such rigid motions is a convex polytope [8], which
is subsequently used by Chenciner in the analysis of bifurcation of relative
equilibrium motions of the n-body problem [6].

In this note, we will show that this result is just an immediate consequence
of a convexity theorem of O’Shea and Sjamaar in real moment map geometry
[34],whichwill be reviewed in particular in the setting of a pair of real reductive
Lie algebras. We have made an effort to write a pedestrian exposition. For this
reason, we have restricted ourselves to the case of central configurations, for
which � = λ is just a scalar operator. Indeed, the analysis of the spectra range
of the angular momentum of a balanced configuration breaks down to this
case, as has been explained in [5].

Finally, one may naturally ask about the density of complex structures cor-
responding to the same spectrum in the range of the spectra of the angular
momenta of rigid motions. An explicit description of this density requires
more involved work and will be a question for future research. Nevertheless,
motivated by this, and in line with O’Shea–Sjamaar’s study of the real moment
map, we shall give a description of the pushforward of the normalized invari-
ant measure by the real moment map for Riemannian symmetric pairs. This
provides a real version of the representation-theoretic interpretation of the
pushforward measure studied in [12,21].

2 The n-body problem in Euclidean space of arbitrary finite dimension

The Newtonian n-body problem in a finite dimensional Euclidean space E
with inner product (·, ·) is the study of the dynamics of n point particles with
positions xk ∈ E and masses mk > 0, with time evolution according to
Newton’s laws of motion

mk ẍk =
∑

j �=k

m jmk(x j − xk)/|x j − xk |3

for k = 1, . . . , n. A configuration x = (x1, . . . , xn) in En is a row vector with
entries vectors in E . Its dual configuration x∗ on En is then a column vector
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with the corresponding dual vectors on E as entries. Here any vector in E
gives rise to a dual vector on E by taking the inner product with that vector.
For example, with this notation x∗x is the n × n Gram matrix of the position
configuration, while xmx∗ is the symmetric linear operator on E sending v to∑

k mk(xk, v)xk . Here m = diag(m1, . . . ,mn) is the mass matrix.
The negative of the potential energy (which is also called the force function

by Lagrange)

U (x) =
∑

j<k

m jmk/|x j − xk |

is a solution of the equations

∇kU (x) =
∑

j �=k

m jmk(x j − xk)/|x j − xk |3

with∇k the gradient with respect to the vector xk ∈ E . If we denote∇U (x) =
(∇1U (x), . . . , ∇nU (x)) ∈ En , then the equations of motion can be written in
the form

ẋ = y, ẏm = ∇U (x)

as a first order system. We denote K (y) = tr(y∗ym)/2 for the kinetic energy.
The total energy is thus defined by H(x, y) = K (y)−U (x), and is a conserved
quantity: Indeed, we have Ḣ = tr(y∗ ẏm) − tr(ẋ∗∇U (x)) = 0.

The total linear momentum p = ∑
mk yk ∈ E is also conserved, which in

turn implies that the center of mass c = ∑
mkxk/

∑
mk ∈ E has uniform

rectilinear motion. By the center of mass reduction we may assume that c =
p = 0, which will be done from now on.
For the position-velocity pair (x, y) ∈ En×En , the total angularmomentum

is defined by

L = ymx∗ − xmy∗,

which is a skew symmetric linear operator on E . Since

L̇ = ẏmx∗ − xm ẏ∗ = (∇U (x))x∗ − x(∇U (x))∗

is the linear operator on E sending v to

∑

j �=k

m jmk(xk, v)
x j − xk

|x j − xk |3 −
∑

j �=k

m jmk
(x j , v) − (xk, v)

|x j − xk |3 xk = 0
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we conclude that L is conserved. The conservation of total linear momentum
and of total angular momentum is a consequence of the Euclidean motion
group of E being symmetry group of the equations of motion, in accordance
with the Noether theorem.

For n ≥ 3, the system is non-integrable in the sense that there are no other
independent integrals of motion than the above, a result for algebraic integrals
due to Bruns [4] (substantially completed and generalized in [24]) and for
analytic integrals due to Poincaré in 1890 [37]. This work by Poincaré on the
(restricted) 3-body problem reveals the great complexity of the general motion
in case n ≥ 3 [35].

For n = 2 the relative position z = x1 − x2 ∈ E is a solution of the Kepler
problem

μz̈ = −κz/|z|3 ⇔ z̈ = −λz/|z|3

with κ = m1m2, λ = m1 +m2, μ = κ/λ > 0. For H = μ|ż|2/2− κ/|z| < 0
the motion is bounded inside the region |z| ≤ −κ/H , and is either collinear or
the point z moves in the Euclidean plane P spanned by z and v = ż along an
ellipse with a focus at the origin, according to the area law. Let i be a complex
structure on P compatible with the Euclidean structure, which means that
i : P → P is a skew symmetric linear operator with i2 = −1. In polar
coordinates (r, θ), the complex variable

z = reiθ

is a solution of the Kepler problem if and only if (r, θ) is a solution of

r̈ − r θ̇2 = −λ/r2, r θ̈ + 2ṙ θ̇ = 0 .

For θ̇ = 0 we get the one dimensional Kepler problem r̈ = −λ/r2, which
corresponds to homothetic motion of z in E . For ṙ = 0 we find θ̇2 = λ/r3,
which corresponds to rigid uniform circular motion with angular velocity ω =√

λ/r3.
For special initial configurations x ∈ En , there exists initial configurations

of velocities y ∈ En such that the above-mentioned Kepler orbits can be lifted
to exact solutions of the n-body problem in E . These are the so called cen-
tral configurations and give rise to homographic motions. They generalize the
collinear 3-body configurations of Euler from [14] and the planar equitriangu-
lar 3-body configurations of Lagrange from [26]. Later examples were found
for n = 4 by Lehmann-Filhés in [27], and Moulton in [32], and the abundance
of planar central configurations for large n was indicated by Dziobek, who
also started to use the term “central figure for such a configuration” in [13].
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Planar and spatial central configurations became a renown subject in celes-
tial mechanics, notably after the standard text book of Wintner from [39]
and a crucial paper by Smale from [38]. The question of linear stability for
the relative equilibrium motions of some planar central configurations was
undertaken byMoeckel in the eighties and nineties, generalizing the Gascheau
stability condition from 1843 for the Lagrange equilateral triangle configura-
tion [16,29,30,36]. Central configurations in a Euclidean space E of arbitrary
finite dimensionwere considered byAlbouy and Chenciner in [1].Wemention
that it is not yet known to us what all central configurations are for n = 4 for
arbitrary choice of masses, and even the finiteness problem of their number
has not been completely settled for n = 5 (for generic choice of masses, this
has been proven by Albouy and Kaloshin in [2]), and is yet largely open for
n ≥ 6. Lecture notes from 2014 by RichardMoeckel on central configurations
in a Euclidean space of arbitrary finite dimension give a nice overview with
many more details (also on the history of the subject), and can be found on his
website [31].

3 Central configurations

Wenowexplain the concept of central configurations in En and their associated
homothetic, rigid and homographicmotions of the Newtonian n-body problem
in E .

Definition 3.1 For given masses, an n-body configuration x ∈ En is called
central with constant λ if

∇U (x) = −λxm

for some scalar λ ∈ R.

Since U (x) is homogeneous of degree −1, we have

tr(x∗∇U (x)) = EU (x) = −U (x)

with E = ∑

k
(xk, ∇k) the Euler vector field on En , and therefore

λ = U (x)/ tr(x∗xm) > 0.

Note that central configurations are just the stationary points of the function
U (x) under the constraint tr(x∗xm)/2 = 1. Clearly, if x ∈ En is central with
constant λ, then for all scalars μ > 0 and all proper rigidities k ∈ SO(E), the
configuration μkx ∈ En is again central with constant λ/μ3.
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Proposition 3.2 If x ∈ En is a central configuration with constant λ and
r(t) is a solution of the one dimensional Kepler problem r̈ = −λ/r2, then
z(t) = r(t)x is a homothetic motion of the n-body problem. Conversely, any
homothetic solution z(t) = r(t)x of the n-body problem can be expressed in
this way for some central configuration x ∈ En.

Proof Indeed, if x ∈ En is a central configuration with constant λ and the
real function r(t) is a solution of r̈ = −λ/r2, then the motion z(t) = r(t)x
satisfies

z̈m = r̈ xm = −λxm/r2 = ∇U (x)/r2 = ∇U (z),

since ∇U (x) is homogeneous in x of degree −2.
Conversely, suppose z(t) = r(t)x is a solution of the n-body problem for

some real function r(t). By substitution into the equation of motion z̈m =
∇U (z), we obtain r2r̈ xm = ∇U (x). Hence r2r̈ = −λ for some constant
λ ∈ R, and so∇U (x) = −λxm, thus x is a central configuration with constant
λ. ��

We recall that a compatible complex structure on E is a skew symmetric
linear operator J : E → E with J 2 = −1. A neccesary and sufficient
condition for such J to exist is that E has even dimension.

Proposition 3.3 Suppose x ∈ En is a central configuration in E with constant
λ = ω2 > 0. Any compatible complex structure J on E gives rise to a rigid
motion t �→ z(t) = exp(tωJ )x of the n-body problem. Conversely, if E is
spanned by x, then any rigid motion solution of z̈m = ∇U (z) is of this form.

Proof Indeed, we have z̈m = −ω2zm = ∇U (z) since z is central with scalar
λ = ω2.

Conversely, if Z : E → E is a skew symmetric operator, then the rigid
motion z(t) = exp(t Z)x of the central configuration x with scalar λ = ω2 is
a solution of z̈m = ∇U (z) if and only if Z2x = −λx . Since by assumption E
is spanned by x , we arrive at Z = ωJ with J a compatible complex structure
on E . ��

Homothetic and rigid motions of a central configuration are both special
cases of the more general homographic motions.

Theorem 3.4 Suppose t �→ (r, θ) is a solution of the planar Kepler problem

z̈ = −λz/|z|3, z = reiθ ⇔ r̈ − r θ̇2 = −λ/r2, r θ̈ + 2ṙ θ̇ = 0

in polar coordinates. If x ∈ En is a central configuration with constant λ and
J is a compatible complex structure on E, then

t �→ z(t) = r(t) exp(θ(t)J )x
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is a homographic motion of the n-body problem.

Proof This is just the standard derivation of the equations of motion for the
Kepler problem in polar coordinates. Indeed, let x ∈ En be a fixed central
configuration with constant λ, thus ∇U (x) = −λxm holds by definition. We
have to check that

z = r(t)eθ(t)J x

is a solution of the equations of motion z̈m = ∇U (z) for the n-body problem.
By differentiation, we have

z̈ = r−1{(r̈ − r θ̇2) + (r θ̈ + 2ṙ θ̇ )J }z,
and by assumption, we get z̈ = −λr−3z. Since z is central with constant λ/r3,
we find ∇U (z) = −λr−3zm, and hence z̈m = ∇U (z) is satisfied. ��

Note that the term “homographic” in the terminology “homographic
motion”, though commonly used by celestial mechanists, should not be
confused with the term “homography” in the geometric sense, which is syn-
onymous to projective transformations. Under a homographic motion with
negative total energy

(ṙ + r θ̇ )2/2 − λ/r < 0,

each point particle xk ∈ E traverses a Kepler ellipse in the plane spanned by
{xk, J xk}with one focus at the origin according to the area law, and all n point
particles traverse similar ellipses.

We end this section by showing that central configurations exist in high
dimensions in abundance. Just take a (heavy) particle with mass M at the
origin x0 = 0 and a cloud of n (light) particles at positions x1, . . . , xn with
equal masses m with

∑
xi = 0 and with a sufficient symmetry.

Theorem 3.5 If G be a finite irreducible subgroup of the orthogonal group
O(E), such that G acts transitively on the cloud x1, . . . , xn and for each
i = 1, . . . , n the fixed point hyperplane in E of the stabilizer group Gi of xi
in G is equal to the line Rxi , then the configuration x = (x0, x1, . . . , xn) with
masses (M,m, . . . ,m) is central.

Proof The total force on the particle xi is the sum of the forces expelled from
the particles x j for j �= i . Hence by symmetry this total force on xi is fixed
by Gi , and therefore equal to −λi xi for some scalar λi . By symmetry we have
λi = λ j = λ for all i, j ≥ 1, i �= j . We can take λ0 = λ as well, and hence
we find a central configuration. ��
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An example of such a configuration is obtained by taking for the cloud
the vertices of a regular polytope in the sense of Schläfli [10]. More gen-
erally, for any finite irreducible reflection group, one can take for the cloud
the orbit of a nonzero vector on an extremal ray of a positive Weyl cham-
ber. For example, in dimension 8 one can obtain such a central configuration
with a cloud of 483,840 particles with Weyl group symmetry of type E8. But
there are plenty of other examples, for example the set of the minimal norm
4 vectors in the Leech lattice gives such a central configuration in dimen-
sion 24 with a cloud of 196,560 particles (see [9] for explanations of these
lattices).

The planar central configurations with a regular n-gon for the cloud were
deeply studied by Maxwell [28], and more recently by Hall and Moeckel [19,
29]. Their rigid motion is linearly stable for n ≥ 7 in case m/M is sufficiently
small (the larger n, the smallerm/M should be). The question of linear stability
of these general symmetric central configurations, in casem/M is sufficiently
small and for dimension at least 4, is completely open. The motivation of
Maxwell for this work was to understand the stability of the rings of Saturn.
His essay, published in 1859, was highly appreciated at the time, and won him
the Adams prize for the year 1856.

4 The spectra of the angular momenta

Let x ∈ En be a central configuration with constant λ > 0. By a suitable
positive scaling we may assume that λ = 1, which will be assumed in this
section. For any compatible complex structure J : E → E , we have discussed
the rigid motion t �→ z(t) = exp(t J )x of the Newtonian n-body problem.
Note that J ∗ = −J = J−1, so J is both skew symmetric and orthogonal. The
conserved angular momentum

L := żmz∗ − zmż∗ = J xmx∗ + xmx∗ J

is a skew symmetric linear operator on E . The compatible complex structure
J turns E into a finite dimensional Hilbert space (E, J ) with Hermitian form
whose real part is the Euclidean inner product (·, ·). Clearly L and J commute,
and if we write X = xmx∗ for the so called inertia operator of the central
configuration x , then

K := L J ∗ = X + J X J ∗

is a nonnegative selfadjoint operator on (E, J ). By definition, the real spectrum
of L is the spectrum of K , considered as an ordered subset ofR+ of cardinality
equal to the complex dimension of the Hilbert space (E, J ).
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What are the possible real spectra of L when J varies over all the possible
compatible complex structures on E? This question was posed by Chenciner,
who conjectured it to be a convex polytope [5], which was subsequently shown
by an indirect argument by Chenciner and Jiménez-Pérez [8] by realizing this
real spectum range between two Horn-type convex polytopes, and observe
that a combinatorial lemma by Fomin–Fulton–Li–Poon [15] affirms the coin-
cidence of these two convex polytopes.

The curious convexity property of this real spectrum range raised the ques-
tion of finding for it a direct, conceptual proof, which is a question posed by
Chenciner and Leclerc [7]. To present a direct proof of this convexity property,
let us rephrase the question.

Let j : E → E be a fixed compatible complex structure. Any compatible
complex structure on E is of the form J = k∗ jk for some k ∈ O(E), and
therefore

M := kKk∗ = (kXk∗) + j (kXk∗) j∗

is a nonnegative selfadjoint operator on the fixed Hilbert space (E, j). Let us
write s(E) for the space of symmetric operators on E , and write s(E, j) for
its linear subspace of selfadjoint operators on (E, j). We consider s(E) as
Euclidean space with respect to the trace form (Y, Z) = tr(Y Z), and observe
that O(E) acts on s(E) by conjugation as orthogonal linear transformations.
Note that the map

s(E) → s(E, j), Y �→ (Y + jY j∗)/2

is nothing else but the orthogonal projection of s(E) onto s(E, j). Clearly this
map is equivariant for the conjugation action of the unitary group U(E, j).
Therefore the question on the range of the spectra of the selfadjoint operator
K on the Hilbert space (E, J ) as J varies over the space of all compatible
complex structures on E boils down to the determination of the image under
the so called real moment map

μ : X → s(E, j), μ(Y ) = (Y + jY j∗)/2

for the real Hamiltonian action of the unitary group U(E, j) on the connected
isospectral class X = {kXk∗; k ∈ O(E)} in s(E) of the inertia operator X =
xmx∗ of the central configuration x .

With these settings, the convexity result of Chenciner and Jiménez-Pérez
will be an immediate consequence of a convexity theorem for the real moment
polytope of O’Shea and Sjamaar [34] for real reductive Lie algebras. Their
result will be explained in the next section.
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5 The convexity theorem

The real general linear Lie algebra gl(E) of a Euclidean vector space E has
the standard Cartan involution θ : gl(E) → gl(E) given by θ(X) = −X∗,
and the corresponding Cartan decomposition

gl(E) = so(E) ⊕ s(E)

as sum of +1 and −1 eigenspaces of θ . The commutator bracket turns so(E)

in a Lie algebra, and s(E) in a representation space for so(E). The trace form
(X, Y ) = tr(XY ) on gl(E) is a nondegenerate symmetric bilinear form, which
is negative definite on so(E) and positive definite on s(E). The conjugation
representation of O(E) on s(E) is an orthogonal representation.

Definition 5.1 A real reductive Lie algebra with Cartan involution is a pair
(g, θ)withLie subalgebra g < gl(E) that is invariant under the standardCartan
involution θ of gl(E). By abuse of notation, the restriction of θ to g is again
denoted by θ , and is called the Cartan involution of g.We have a corresponding
Cartan decomposition

g = k ⊕ s, k = g ∩ so(E), s = g ∩ s(E)

of g as sum of +1 and −1 eigenspaces of θ . The restriction of the trace form
to g is called the trace form of g. It is a nondegenerate symmetric bilinear
form, which is negative on k and positive on s. The connected Lie subgroup
K < SO(E) with Lie algebra k has a representation on s by conjugation.
Finally, we shall assume that K < SO(E) is compact, so as to exclude the
case of quasi-periodic subgroups. The connected Lie subgroup G < GL(E)

with Lie algebra g is a real reductive Lie group with K as a maximal compact
subgroup.

Example 5.2 If j : E → E is a fixed complex structure on E then the com-
plex general linear Lie algebra gl(E, j) gives, by restriction of scalars, a real
reductive Lie algebra with Cartan involution.

Definition 5.3 A real reductive Lie algebra (g, θ) is called complex if there
is a complex structure j : g → g making g into a complex Lie algebra, such
that jθ = −θ j . This means that θ is an antilinear involution of (g, j). Note
that multiplication by j interchanges k and s.

The complex general linear Lie algebra (gl(E, j), θ) is a natural example
of a complex reductive Lie algebra with Cartan involution.
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Definition 5.4 A real reductive Lie algebra (g, θ) with Cartan decomposition
g = k ⊕ s has a natural complexification (gc, θ) defined by

gc = g + ig, i = √−1

with Cartan decomposion

gc = u ⊕ p, u = k + is, p = s + ik

for the natural antilinear Cartan involution θ on gc. The homogeneous spaces
G/K and U/K are dual (in the sense of Élie Cartan) Riemannian symmetric
spaces of noncompact and compact type respectively. Both spaces are different
real formsof the complex symmetric spaceGc/Kcwith transversal intersection
at the base point eK . Here Gc is the complex Lie subgroup of GL(Ec) with
Lie algebra gc (with Ec the complexification of E), and with Kc the complex
Lie subgroup of Gc Lie algebra kc = k + ik.

The following theorem collects the standard structure theory for real reduc-
tive Lie algebras with Cartan involution [22].

Theorem 5.5 Let (g, θ) be a real reductive Lie algebra with Cartan decom-
position g = k ⊕ s. Any two maximal commutative linear subspaces in s are
conjugated under K . If a < s is a fixed maximal commutative linear subspace,
then the Weyl group W = NK (a)/CK (a) (normalizer modulo centralizer of
a in K ) acts by conjugation on a as a finite reflection group. Let a+ denote
the closure of a fixed connected component of the complement a◦ of all the
mirrors in a, and call it the (closed) positive Weyl chamber. Then a+ is a strict
fundamental domain for the action of W on a, and likewise for the conjugation
action of K on s.

Letg = k⊕sbe a real reductiveLie algebrawith complexificationgc = u⊕p
as above. For X ∈ a+ we shall denote

X = {kXk∗; k ∈ K } ⊂ s

and call it the isospectral class of X in s. By construction, X is connected, and
X = X ∩ a+ by the above theorem. If we denote

Xc = {uXu∗; u ∈ U } ⊂ p

then Xc has the structure of a complex manifold with real form X = Xc ∩ s.
Moreover Xc has a Kähler metric, whose imaginary part is the Kirillov–
Kostant–Souriau symplectic form ω on Xc. The action of U on Xc is
Hamiltonian with moment map the inclusion Xc ↪→ p. For this reason, we
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shall call the action of K on the real form X a real Hamiltonian action with
real moment map the inclusion X ↪→ s.

We now have set up all the notations in order to formulate the convexity
theorem of O’Shea and Sjamaar [34] in case of a real reductive Lie algebra.

Theorem 5.6 Suppose (g, θ) < (g′, θ ′) is a comparable pair of real reductive
Lie algebras with Cartan involution. For X′ ⊂ s′ a fixed isospectral class the
orthogonal projection μ : X′ → s is clearly equivariant for the conjugation
action of K , and is called the real moment map for the real Hamiltonian action
of K on X′. Under all these assumptions, the intersection

μ(X′) ∩ a+

is a convex polytope, called the moment polytope of the real Hamiltonian
action of K on X′.

This theorem has a long history, and we shall mention just a few selected
references. In case (g, θ) < (g′, θ ′) are both complex reductive Lie algebras
with Cartan involution the theorem is due to Heckman [21]. The result was
generalized byGuillemin and Sternberg, who replaced the coadjoint orbitX′ of
the overgroup K ′ by a complex projectivemanifoldwith a Fubini–Studymetric
h with a holomorphic linearizable action of K , which leaves the symplectic
form ω = �h invariant, and μ the moment map for this Hamiltonian action of
K [18]. This result was also obtained by Mumford, published in the appendix
of a paper byNess [33]. This is the non-abelian convexity theorem in theKähler
case, which generalizes the former Abelian convexity theorem of Atiyah [3],
and that of Guillemin and Sternberg [17]. The proof of the general casewithout
assuming the symplectic manifold to be Kähler was found by Kirwan [25].
These works were all done in the early eighties with many more exciting
developments in moment map geometry.

It took almost two decades before O’Shea and Sjamaar discovered the nat-
ural real setting of the convexity theorem, which generalizes the Abelian real
convexity theorem of Duistermaat [11].

Indeed, consider the commutative diagram

s′ ⊃ X′ −−−→ X′
c ⊂ p′

⏐
⏐
�μ μ

⏐
⏐
�

s ⊃ μ(X′) −−−→ μ(X′
c) ⊂ p

with X′
c = {uXu∗; u ∈ U ′}. As before, X′

c can be canonically identified with
a coadjoint orbit of U ′. Therefore it has a natural symplectic form ω′, for
which the action of U ′ by conjugation is Hamiltonian with moment map the
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inclusionX′
c ↪→ p′. The restriction of the action fromU ′ toU gives a moment

map μ : X′
c → p, which is just the restriction of the orthogonal projection

p′ → p.
The space X′

c has a natural antisymplectic involution τ , which is just the
restriction of the antiinvolution −θ ′ of p′ = s′ ⊕ ik′, taken +1 on s′ and −1
on ik′. In turn, the fixed point locus of τ on X′

c is just X
′ = X′

c ∩ s′. Hence the
map μ : X′ → s is nothing but the restriction of μ : X′

c → p to the real form
X′. This explains our use of the terms real moment map and real Hamiltonian
action.

If h ⊂ p is a maximal commutative subspace with h ∩ s = a and h+ is an
adapted positive Weyl chamber, in the sense that h+ ∩ a = a+, then

μ(X′
c) ∩ a+ = (μ(X′

c) ∩ h+) ∩ a

is a convex polytope by the convexity theorem of Heckman.
Theorem 5.6 is therefore a direct consequence of the following result, which

is also due to O’Shea and Sjamaar.

Theorem 5.7 We have μ(X′) ∩ a+ = μ(X′
c) ∩ a+.

Wehave restricted ourselves to the case of (co)adjoint orbits for a real reduc-
tive Lie algebra, which both suffices for our purpose and keeps the exposition
as concrete as possible. In their paper, O’Shea and Sjamaar formulated every-
thing in the general setting of a Hamiltonian action of a connected compact
Lie group U on a connected symplectic manifold (M, ω). Suppose that the
group U has an involution θ with fixed point group K , and the space (M, ω)

has an antisymplectic involution τ with Mτ not empty. These two structures
are assumed to be compatible, in the sense that

τ(ux) = θ(u)τ (x) and μ(τ(x)) = −θ(μ(x))

for all u ∈ U and x ∈ M . Under these conditions, O’Shea and Sjamaar
obtained the following general result

Theorem 5.8 We have μ(Mτ ) ∩ a+ = μ(M) ∩ a+ and the right hand side

μ(M) ∩ a+ = (μ(M) ∩ h+) ∩ a

is indeed a convex polytope by the convexity theorem of Kirwan.

It is readily seen that this implies Theorem 5.7.

6 Pushforward of the normalized measure by the real moment map

We start this section by explaining the notion of Gelfand pairs, and their asso-
ciated harmonic analysis.
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6.1 Harmonic analysis for Gelfand pairs

Definition 6.1 A locally compact unimodular topological group G with a
compact subgroup K < G is called a Gelfand pair if the natural unitary
representation of G on L2(G/K , dx) decomposes in a multiplicity free way.

It can be shown that this definition is equivalent to the following one:

Definition 6.2 A pair K < G is called a Gelfand pair, if for any irreducible
unitary representation (V, 〈·, ·〉) of G, the restriction from G to K contains the
trivial representation of K with multiplicity at most 1.

Definition 6.3 For a Gelfand pair K < G, an irreducible unitary representa-
tion (V, 〈·, ·〉) of G is called spherical if V K = Cv has dimension 1 for some
v ∈ V with 〈v, v〉 = 1. The function

G � g �→ φV (g) = 〈gv, v〉
is called the elementary spherical function associated with the spherical rep-
resentation V .

Note that elementary spherical functions are normalized by φV (e) = 1.

Definition 6.4 Any function on G that is both left and right invariant under K
is called a spherical function.

Yet, a third equivalent definition for a Gelfand pair is the following:

Definition 6.5 The pair K < G is a Gelfand pair if the Hecke algebra
H(G/K ) of continuous spherical functions on G with compact support is
commutative with respect to the convolution product.

The elementary spherical functions are the simultaneous eigenfunctions for
the commutative algebraH(G/K ), acting as convolution integral operators on
the space of spherical functions.

Finally, in case that G is a connected Lie group, there is a fourth equivalent
definition for a Gelfand pair:

Definition 6.6 For a connected Lie groupG, the pair K < G is aGelfand pair
if and only if the algebra D(G/K ) of linear differential operators on G/K ,
which are invariant under G, is commutative.

Similarly, the elementary spherical functions are the simultaneous eigen-
functions for the commutative algebraD(G/K ), acting as invariant differential
operators on the space of spherical functions.

Under all these equivalent conditions, the abstract spherical inversion the-
orem gives the existence of a unique positive measure μP on the set Ĝ/K of
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equivalence classes of unitary irreducible spherical representations of K < G,
called the spherical Plancherel measure, such that

φ(x) =
∫

̂G/K
φ̂(V )φV (x)dμP(V )

for all φ ∈ H(G/K ), with

φ̂(V ) =
∫

G/K
φ(x)φV (x)dx

the so called spherical Fourier transform of φ ∈ H(G/K ).
The case that K is the trivial subgroup ofG = R+ orG = {z ∈ C

×; |z| = 1}
gives the classical inversion formula for Fourier integrals and Fourier series
respectively.

6.2 Harmonic analysis for Riemannian symmetric pairs

After a brief exposition of the harmonic analysis for general Gelfand pairs,
we now come to certain particular cases of our interest. In the notation of the
previous section, these are the Riemannian symmetric spaceG/K of noncom-
pact type, its compact dual Riemannian symmetric space U/K and, finally,
the intermediate flat tangent space s, considered as homogeneous space for
the so called Cartan motion group s � K .

The spherical inversion formula was made explicit in the symmetric space
caseG/K by Harish-Chandra [20] with simplifications by Helgason, Gangolli
andRosenberg (cf. [23]). Harish-Chandra enlarged the set Ĝ/K of equivalence
classes of spherical irreducible unitary representations of G to the set G̃/K
of equivalence classes of spherical continuous irreducible representations of
G on a Hilbert space, which are only unitary for the subgroup K . He showed
that G̃/K ∼= ac/W and derived the Harish-Chandra isomorphism

D(G/K ) ∼= SaWc , D �→ γD,

inwhich SaWc denotes the symmetric algebra of aWc . The associated elementary
spherical functions are given by the Harish-Chandra integral formula

φλ(g) =
∫

K
a(gk)λ−ρdk =

∫

K
e(λ−ρ,A(gk))dk

with Iwasawa decomposition G = K AN , g = k(g)a(g)n(g), Iwasawa pro-
jection A(g) = log a(g), the restricted Weyl vector ρ (half sum of positive
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restricted roots counting multiplicities) and the normalized Haar measure dk
on K .

These elementary spherical functions are solutions of the system of differ-
ential equations

Dφλ = γD(λ)φλ, D ∈ D(G/K )

with normalization φλ(e) = 1 as before. The spherical inversion theorem now
takes the form

φ(x) = 1

|W |
∫

ia
φ̂(λ)φλ(x)

dμL(λ)

|c(λ)|2

with spherical Fourier transform

φ̂(λ) =
∫

G/K
φ(x)φλ(x)dx,

the LebesguemeasureμL on ia and the Harish-Chandra c-function λ �→ c(λ),
given as an explicit product of �-factors by the Gindikin–Karpelevic formula.

The pair K < s � K , with the semidirect product s � K acting on s via
rotations and translations, is aGelfand pair aswell, and the group s�K is called
the Cartan motion group of the space s. The algebra D(s) of invariant linear
differential operators is isomorphic to the algebra SsKc ∼= SaWc of K -invariant
linear differential operators on s with constant coefficients. Its simultaneous
eigenfunctions are the symmetrized plane waves

ψλ(X) =
∫

K
e(λ,kXk∗)dk

normalized by ψλ(0) = 1 for all λ ∈ ac and X ∈ s. The spherical inversion
theorem is a direct consequence of the classical inversion theorem for the
Euclidean Fourier transform on s, applied for functions invariant under K . In
a sense, we can consider this theory on the flat space s as the confluent limit
of the above Harish-Chandra theory for the curved space G/K , by the help of
the following formula

Proposition 6.7 We have

ψλ(X) = lim
n→∞ φnλ(exp(X/n))

for all λ ∈ ac and X ∈ s.
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Proof By Harish-Chandra’s integral formula

φλ(exp X) =
∫

K
e(λ−ρ,A(exp X ·k))dk =

∫

K
e(λ−ρ,A(exp(Ad(k)X)))dk,

we have

φnλ

(
exp(X/n)

) =
∫

K
e(nλ−ρ,A(exp(Ad(k)X/n)))dk.

On s, the infinitesimal Iwasawaprojection s → a coincideswith the orthogonal
projection s → a. Indeed, if X ∈ s has infinitesimal Iwasawa decomposition
X = Y +H + Z , for which Y ∈ k, H ∈ a, Z ∈ n, then X = H + (Z −θ Z)/2,
which means that H is also the orthogonal projection of X on a, as we have
the orthogonal decomposition s = a ⊕ (s ∩ (n ⊕ θn)). We therefore deduce
that

lim
n→∞ φnλ

(
exp(X/n)

) =
∫

K
e(λ,limn→∞ nA(exp(Ad(k)X/n)))dk

=
∫

K
e(λ,Ad(k)X)dk,

which by definition is equal to ψλ(X), for all λ ∈ a, and thus for all λ ∈ ac.
��

The elementary spherical function (λ, x) �→ φλ(x) is holomorphic and
Weyl group invariant in the spectral variable λ ∈ ac, and real analytic in the
space variable x ∈ G/K , or, in other words, holomorphic in the space variable
x taken from a suitable tubular neighborhood of G/K in the complexified
space Gc/Kc. It has a holomorphic extension to all of Gc/Kc if and only
if (λ − ρ) lies in the intersection L ∩ a+ of a suitable lattice L with the
positive chamber a+ ⊂ a, given in explicit terms of the restricted root system
by the Cartan–Helgason theorem [23, Ch.V, Theorem 4.1]. The corresponding
irreducible spherical representation V (λ) (with highest weight (λ−ρ)) is then
finite dimensional, and unitary for the compact form U of Gc. If v ∈ V (λ)K

is a normalized spherical vector, then φλ(u) = 〈uv, v〉 for u ∈ U with 〈·, ·〉
the invariant Hermitian form on V (λ).

6.3 Pushforward of the normalized measure

After this survey of the theory of spherical functions, we can finally explain
the meaning of the pushforward under the real moment map μ : X′ → s
of the normalized invariant measure on X′ in the notation of Theorem 5.6
in terms of spherical representation theory. Let λ′ ∈ L ′+ = (L ′ ∩ a′+) + ρ′
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and (V (λ′), 〈·, ·〉) be the associated finite dimensional spherical irreducible
unitary representation of U ′ with normalized spherical vector v′ ∈ V (λ′)K ′

.
Let φλ′(u′) = 〈u′v′, v′〉 be the associated elementary spherical function on
U ′/K ′. Its restriction to the totally geodesic submanifold U/K < U ′/K ′ is
given by

φλ′(u) =
∑

λ∈L+
mλ′(λ)φλ(u)

with mλ′(λ) = 〈vλ, vλ〉 if v′ = ∑
λ vλ is the primary decomposition of v′ into

components vλ for λ ∈ L+ of spherical vectors for the Gelfand pair K < U .
Due to the linearity and continuity of the real moment map, it is enough to

analyze those λ′ ∈ L ′+. For λ′ ∈ L ′+, let

μ : X′
λ′ = {k′λ′k′∗; k′ ∈ K ′} → s

be the real moment map for the real Hamiltonian action of K , and let dx′ be
the normalized K ′-invariant measure on X′

λ′ , so that
∫
dx′ = 1.

Theorem 6.8 Let ν �→ δ(ν −λ) be the Dirac delta distribution on a with unit
mass at λ. The probability measure μλ′ on a+ given by

dμλ′(ν) = lim
n→∞

∑

λ∈L+
mnλ′(λ)δ(ν − λ/n)

describes the pushforward measure μ∗(dx′) on s by the relation

∫

s
f (λ)μ∗(dx′)(λ) =

∫

a+
f (λ)dμλ′(λ)

for all continuous functions f on s, which are invariant under K .

Proof For n ∈ N, λ′ ∈ L ′+ and X ∈ s we have

φnλ′(exp(X/n)) =
∑

λ∈L+
mnλ′(λ)φλ(exp(X/n))

=
∑

λ∈L+/n

mnλ′(nλ)φnλ(exp(X/n)),

which in turn implies

ψλ′(X) =
∫

a+
ψλ(X)dμλ′(λ)
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for all X ∈ s. Hence the desired formula for μλ′ as the pushforward measure
μ∗(dx′) follows from the Euclidean inversion theorem for the flat space s and
the Fubini theorem. ��

This theorem generalizes the result of [21] on the relation between the
asymptotic behaviour of branching multiplicities and the pushforward of the
Liouville measure under the moment map in case (g, θ) < (g′, θ ′) are both
complex reductive Lie algebras with a Cartan involution. In that paper, the
convexity theoremwas derived from the above theorem together with a simple
representation-theoretic property.

6.4 Some questions

We end this section and the paper with some questions.

Question 6.9 For λ ∈ L+ and λ′ ∈ L ′+, does the spherical irreducible repre-
sentation V (λ) of (g, θ) occur as subrepresentation of the spherical irreducible
representation V (λ′) of (g′, θ ′) if and only mλ′(λ) > 0?

Question 6.10 Is it possible to generalize the results of this section to the
general Hamiltonian Kählerian setting, in line with O’Shea and Sjamaar?

Question 6.11 Is there a localization formula for the pushforward of the nor-
malized Riemannian measure under the real moment map?

Question 6.12 In the case studied byChenciner and Jimenez, the convex spec-
tra polytope can be explicitly described. Is it yet possible to give an explicit
description of the pushforward measure?
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